Lecture 10 LEARNING STRATEGIES IN SLA

The plan:

Integrated tasks
Cognitive strategies
Social/affective strategies

It is obvious that parallel processing is being applied when tasks simultaneously tap entirely different resources such as talking on a cell phone while riding a bicycle, but it also less obviously occurs within integrated tasks such as simply talking or reading, when encoding/decoding of phonology, syntactic structure, meaning, and pragmatic intent occur simultaneously. Many connections in the brain must be activated all at once to account for successful production and interpretation of language, and not processed in sequence (i.e. one after the other).

Little research based on this approach has been conducted in SLA, but the assumption is that transfer from L1 to L2 occurs because strong associations already established in L1 interfere with establishment of the L2 network. Because frequency is the primary determinant of connection strength, it might be predicted that the most common patterns in L1 would be the most likely to cause interference in L2, but research on transfer from linguistic perspectives does not support this conclusion in any strong sense; L1–L2 relationships are not that simple.

Differential L2 outcomes may also be affected by individuals' learning strategies: i.e. the behaviors and techniques they adopt in their efforts to learn a second language. Selection from among possible strategies is often a conscious choice on the part of learners, but it is strongly influenced by the nature of their motivation, cognitive style, and personality, as well as by specific contexts of use and opportunities for learning. The other variables we considered earlier in this section – age, sex, and aptitude – also play a role in strategy selection.

Many learning strategies are culturally based: individuals learn how to learn as part of their socialization experiences, and strategies they acquire in relation to other domains are commonly transferred to language learning, which may take place under very different circumstances, sometimes within a foreign educational system. Not all strategies are equal: some are inherently more effective than others, and some more appropriate in particular contexts of learning or for individuals with differing aptitudes and learning styles. One goal in SLA research has been to identify which strategies are used by relatively good language learners, with the hope that such strategies can be taught or otherwise applied to enhance learning. A typology of language-learning strategies which is widely used in SLA was formulated by O'Malley and Chamot (Chamot 1987):

• Metacognitive: e.g. previewing a concept or principle in anticipation of a learning activity; deciding in advance to attend to specific aspects of input; rehearsing

linguistic components which will be required for an upcoming language task; self-monitoring of progress and knowledge states.

- Cognitive: e.g. repeating after a language model; translating from L1; remembering a new word in L2 by relating it to one that sounds the same in L1, or by creating vivid images; guessing meanings of new material through inferencing.
- Social/affective: e.g. seeking opportunities to interact with native speakers; working cooperatively with peers to obtain feedback or pool information; asking questions to obtain clarification; requesting repetition, explanation, or examples. Metacognitive strategies are those which attempt to regulate language learning by planning and monitoring; cognitive strategies make use of direct analysis or synthesis of linguistic material; social/affective strategies involve interaction with others. Self-reporting is a common means for collecting information on what strategies learners select, usually with interviews and questionnaires about what they have done or usually do (retrospective reports), or with think-aloud activities which have learners talk about what they are doing while engaged in an L2 learning task (concurrent reports).

Self-reports are also collected by asking learners to keep journals or diaries and to record what they are conscious of doing in their effort to learn. Because the strategies used by adults are usually not visible, observation has limited value, but it is often used to collect information on children. Some researchers (e.g. Kleifgen 1986) have also used play-back techniques with children, where they videotape learners working at L2 tasks and then interview them in their L1 about what strategies they were using along with replaying the videotape for them.

Recording private speech with unobtrusive wireless microphones is also a profitable data-collection procedure with children who naturally talk to themselves while working at cognitively demanding tasks (e.g. Saville-Troike 1988). Some of my subjects as young as three years in age softly repeated the new language forms after others, drilled themselves with self-created pattern practices, translated L2 forms to L1, rehearsed what they were going to say before speaking, and played games that were based on sounds of the new language. (Examples from this research are included in the next chapter.)

Age can have an influence on learning strategies; for example, children tend to use more repetition whereas adults use more synthesis. Similarly the sex of learners can be significant, as females tend to use relatively more social/affective strategies than males, as well as more metacognitive strategies in listening tasks. A range of findings show "good learners" to have the following major traits (Ellis 2008:708):

- Concern for language form (but also attention to meaning)
- Concern for communication
- Active task approach
- Awareness of the learning process
- Capacity to use strategies flexibly in accordance with task requirements As with other correlational research, it is difficult to establish causality, or even directionality: for example, "good learners" may approach language tasks more actively

because they are more proficient (not more proficient because they are more active), or because they are more selfconfident. In spite of the extensive research documenting "good learner" traits, the extent to which strategic behavior can be initiated or changed with training is still not known. One problem in determining this, as noted above, is whether strategies are the cause or the result of L2 learning success. Another problem is the complex of other variables which must be taken into account. This "problem" is at the heart of "context" for Complexity Theory, a relatively recent theoretical focus in SLA which is discussed in this chapter. Inclusion of strategy training for SLA is generally viewed positively in any case, with the reasonable expectation that heightened awareness of strategic possibilities will beneficially inform L2 learners and may empower them to take control of their own learning (e.g. Oxford 1992; Jones 1998). A danger is that a researcher or instructor may have preconceived ideas as to "what works" and disrupt a student's The psychology of Second Language Acquisition 99 successful strategy by imposing or encouraging a different one. (For a comprehensive overview of research on aptitude, motivation, cognitive style, personality, and learning strategies, see Dörnyei 2005, 2006.)

The effects of multilingualism The possible gains/costs of multilingualism in relation to other cognitive faculties or processes have been a matter of speculation and study for many years. The strength of positive versus negative perceptions of the relationship has shifted over time, and this shift has been attributable as much to philosophical and political factors as to scientific findings. Philosophically, the notion that multilingualism has positive effects on cognitive development was traditionally related to the belief that foreign language study (especially Greek and Latin) is good for "training the mind"; there is still an assumption in many parts of the world that multilingualism is an essential characteristic of "educated" and "cultured" members of society. The opposite notion, that multilingualism has a negative impact on general intelligence, perhaps reached its zenith in US-based research on immigrants during the 1930s, motivated by increasingly xenophobic isolationist political sentiments at that time, and based on the low scores of immigrants who spoke languages other than English natively on the standardized tests of intelligence which then were coming into widespread use. (The point was not made until some years later that these tests were being administered in a language which the subjects did not speak fluently or understand well, and that the individuals were not being tested in their native languages.)

Research since the 1960s has largely supported claims that multilingualism has positive effects on intellectual functions, based on "measures of conceptual development, creativity, metalinguistic awareness, semantic development, and analytic skills" (Diaz 1985:18). The following list is a summary of positive findings (Diaz and Klingler 1991:184):

• Bilingual children show consistent advantages in tasks of both verbal and nonverbal abilities.

- Bilingual children show advanced metalinguistic abilities, especially manifested in their control of language processing.
- Cognitive and metalinguistic advantages appear in bilingual situations that involve systematic uses of the two languages, such as simultaneous acquisition settings or bilingual education.
- The cognitive effects of bilingualism appear relatively early in the process of becoming bilingual and do not require high levels of bilingual proficiency nor the achievement of balanced bilingualism.
- Bilingual children have advantages in the use of language for verbal mediation, as shown by their higher frequency of private-speech utterances and their larger number of private-speech functions.

Recent attention has focused most on the positive effects that bilingualism appears to have on memory. This holds true both for children and for 100 aging adults (e.g. Kormi-Nouri, Moniri, and Nilsson 2003; Bialystok, Craik, Klein & Viswanathan 2004). Relatively recent negative claims regarding multilingualism have primarily addressed capacity limitations for language acquisition and maintenance, with evidence that simultaneous bilingualism in childhood may result in a narrower range of lexical development in either language, and that intensive and continued use of L2 may reduce accessibility of L1. Common and stable multilingualism among populations in many parts of the world, however, suggests that whatever limitations there may be are not biological in nature. Some of the social factors influencing interaction between multilingualism and other aspects of cognitive development and academic performance are discussed in Chapter 5.

Most interesting here is that, whether evidence is positive or negative (and it is generally positive), there are differences in the way multilinguals perform cognitive tasks. A person who knows more than one language can perceive and experience the world through more than one lens: "Both negative and positive effects are signs that L2 users think differently from monolinguals . . . Multicompetence is a different state of mind" (Cook 1992 :565). Accounting for the differences remains one of the most intriguing challenges for psychological approaches to SLA.

Psychological perspectives on what is acquired in SLA concentrate on additions or changes that occur in neurological makeup, and on how the multilingual brain is organized. We have seen that the physical representation of the second language in the brain is not very different from the first, but there are differences in brain organization which relate to how proficient people are in L2, and to how they learned it. In contrast to Chomsky's proposal that there is a speciesspecific Language Acquisition Device (LAD), the psychologists surveyed in this chapter generally view how second languages are learned as involving the same processes as the acquisition of other areas of complex knowledge and skills: i.e. "learning is learning." Some consider the processes to be largely a matter of abstracting rules or principles, and some to be more a physical neurological development of associative networks and connections.

The question of why some learners are more successful than others leads to the examination of differences in the learners themselves. We find that language-learning outcomes are influenced by age, aptitude, and motivation. Other factors in individuals' learning styles and strategies correlate with degree of success in SLA, but we can be much less sure of claims for cause—effect relationships. Humans are inherently social creatures, and it is difficult to assess individual cognitive factors in language learning apart from the influence of the learner's total social context, to which we turn next.

Discussion questions

- 1. How do integrated tasks help learners develop multiple language skills simultaneously?
- 2. What are the most effective cognitive strategies for improving vocabulary and grammar in SLA?
- 3. How can social and affective strategies reduce learner anxiety and increase motivation?
- 4. In what ways can teachers encourage learners to use a combination of cognitive, social, and affective strategies?
- 5. How does the choice of learning strategies differ among learners with varying proficiency levels or learning styles?